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Abstract

An existing method for estimating intermolecular exchange energies in weak Van der Waals interactions, based on the
overlap between their ground-state charge densities, is extended to ionic interactions using the overlap between the polarised
charge density of a negative ion and the ground-state charge density of surrounding positive jons. This enables the
exchange-induction energy to be included in the model. One adjustable parameter for each ion pair is fitted to the dimer
interaction energy. The prediction of in-crystal anion polarizabilities is excellent for the five alkali halides tested, and
polarizabilities of anions in ionic dimers and trimers are reasonably well reproduced for lithium halides. © 1998 Elsevier

Science B.V. All rights reserved.

1. Introduction

Calculations of weak Van der Waals interactions
often start by partitioning the interaction energy us-
ing a perturbation expansion in the intermolecular
potential energy operator V:

Viotat = Veour T Vexen

= (Ve + V@ + VR + ) Ve (1)
where V{), is the first-order Coulomb interaction
energy, involving the unperturbed ground-state
charge densities; the second-order Coulomb energy
consists of the induction energy V. and the disper-
sion energy Vi, and antisymmetrisation of the
wavefunction gives the exchange energy V... The
perturbation expansion of the Coulomb energy con-
verges reasonably quickly for weak interactions, and
third-order and higher terms are generally ignored.
However, there is no unique perturbation expansion
of the exchange energy, and it is more difficult to

calculate than the Coulomb energy. This subject has
been extensively reviewed, for example in Refs.
[1,2). One approach involves expanding the ex-
change energy in powers of the overlap integral S;
the leading term in the exchange energy is then a
single exchange of electrons between the monomers,
of order S2. Alternatively, the Heitler-London ex-
change energy, which is calculated by antisymmetris-
ing the ground-state monomer wavefunctions over
all electrons of the dimer, can be used as the leading
term in the exchange energy.

For stronger interactions, such as those between
ions, the S? and Heitler-London exchange energies
are both poor approximations to the total exchange
energy, as S is large and the Heitler-London ex-
change energy does not include contributions such as
the exchange-induction energy and the exchange-dis-
persion energy. The exchange-induction energy,
which is expected to be particularly important for
ionic clusters, describes the effect of polarisation of
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molecules or ions on the exchange-repulsion be-
tween them, or, equivalently, the change in induction
energy caused by exchange. To obtain potential en-
ergy surfaces for ionic systems, it is important to
have reliable representations both of the exchange-
induction energy itself, and of the change in ionic
polarizability, caused by exchange, in a cluster or
crystal environment. The exchange-induction energy
has been calculated by direct ab initio methods based
on perturbation theory (for recent applications see
Refs. [3,4]), but these calculations are expensive and
are restricted to low orders of perturbation theory
and to small clusters. More empirical methods have
also been used [5-8], but none is completely satis-
factory for one or more of the following reasons:
they model either the ion polarizability or the ex-
change-induction energy, but not both; they are used
to approximate only contributions of low order in S
and V; they are applicable either to dimers or solids,
but not both; they give unreliable results for some
ions.

The need for a method of calculating exchange-
induction and the related effect of exchange on ionic
polarizability in solids has motivated the develop-
ment of a new empirical model, based on the charge
density overlap model [9]. The application of the
model to a negative ion A surrounded by positive
ions B is considered here. If the polarisation of the
positive ions and the dispersion energy are ignored,
the Coulomb interaction energy V., (to infinite
order) can be calculated using a finite field method:

(ﬁ0A+V)‘/’A=(E0A+VCou1)'/‘A~ (2)

Here H,, is the Hamiltonian of A and E,, is its
ground-state energy. The operator V includes the
interaction of the electrons and nuclei of A with all
the surrounding positive ions. However, since the
wavefunction depends only on the electron coordi-
nates of A, there is no exchange energy.

The charge density overlap model approximates
the exchange energy by assuming that it is propor-
tional to the overlap of the electron densities p° of
the ions,

Voo = LK [ p(r) p3(r)dr, (3)

where K is an adjustable parameter. The important

generalisation made in this work is that p; is no
longer assumed to be the charge density of A in its
ground state. Thus, when A is polarised, its overlap
with its neighbours changes and the exchange energy
also changes. This means that Eq. (3) is capable of
modelling the exchange-induction energy as well as
the exchange energy.

The implementation of Eq. (3) within an ab initio
program is quite straightforward, and is described in
Section 2. The lithium halides LiF and LiCl are
chosen to test the model, since the cation polarizabil-
ities are negligible; some results for the sodium and
potassium halides are also presented. One advantage
of using such small systems is that the ions are small
enough to allow the basis set limit to be approached
in test calculations, which minimises basis set ef-
fects. The calculations and results are presented in
Section 2. Section 3 contains a discussion of the
results and of the significance of the overlap model.

Atomic units are used in the following. The atomic
unit of energy is the Hartree (E, = 4.3597482 X
1072 J), and the atomic unit of length is the Bohr
(ay=5.29177249 X 10™'! m).

2. Calculations and results

A finite-field calculation on anion A in the field
of N cations B can be performed by modifying only
the one-electron part of the Hamiltonian matrix for
A:

hij=h?j+2 Z Dszf¢i(’1)¢j(’1)

B kl€B
x’ﬁzlﬁbk(’z)‘ﬁz(rz)d’ldrz s (4)

where ¢; and ¢; are basis functions of A, ¢, and ¢,
are basis functions of B, D,, is a density matrix
element taken from a monomer ab initio calculation
on B, and A° is the one-electron Hamiltonian matrix
for monomer A.

The overlap model consists of adding an addi-
tional ‘effective finite-field’ term, which approxi-
mates the exchange energy, and has the form

W =KL L Dufo(r)d(r)eu(r)s(r)ar.
| )
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This involves the same amount of additional work as
the ordinary finite-field calculation described by Eq.
(4), which is approximately N cycles of a direct SCF
dimer calculation; subsequently, the Schrddinger
equation is solved for the electrons of A only, which
takes only the time required for a monomer calcula-
tion. There is a particularly significant saving in
computer time, relative to an ab initio calculation on
all N + 1 ions, either if N is large or if correlation is
included. For this initial study, the SCF approxima-
tion is employed.

A new SCF computer program is used to calculate
the two-electron integrals in Egs. (4) and (5), incor-
porate them into the Hamiltonian matrix for A, and
solve the resulting matrix Hartree-Fock equations.
The integrals in Eq. (4) are standard two-electron
integrals and are obtained using a slight modification
of the Head-Gordon and Pople recurrence relations
[10] (see Ref. [11] and Eq. (98) therein). The inte-
grals in Eq. (5) are obtained using the same method,
but with different [0]" integrals over spherical
Gaussian functions [11], which are easily written
analytically. The energies, multipole moments and
polarizabilities obtained from the SCF program have
been checked against GAUSSIAN [12] and CAD-
PAC [13] for several small molecules and ions with
basis functions up to f symmetry. The program can
also use basis functions of g, h and i symmetry in
Cartesian form.

The calculations require large basis sets, which
are chosen to be even-tempered [14]: for each angu-
lar momentum I, Gaussian exponents form a geo-
metric progression with minimum exponent a; i,

and common ratio 8,. These parameters are obtained
by a rough optimisation of the SCF energy and anion
polarizability. Basis set details are given in Table 1.
The polarizabilities agree within about 0.2 atomic
units with accurate Hartree-Fock calculations [15] on
the fluoride and chloride ions.

Both all-electron (supermolecule) and finite-field
calculations are used in this work. A supermolecule
calculation on the AB dimer is denoted AB, and a
finite-field calculation on A in the presence of B,
using Eqgs. (4) and (5), is denoted A[B). For the
supermolecule calculations, the lithium, sodium and
potassium basis sets are contracted to minimal 1s,
2s1p and 3s2p basis sets respectively, in an attempt
to remove any small effects from polarisation of the
positive ions. Finite-field calculations are free from
this complication, as the electrons of the positive
ions are not included in the wavefunction. The SCF
energies of the ions are the same for the contracted
as for the uncontracted basis sets.

To use the overlap model, it is first necessary to
obtain a value for the parameter K. For easy compar-
ijson with ab initio results, K is obtained in the
present work using supermolecule SCF calculations,
but it could equally be fitted to experimental data.
The method is exemplified by the LiF dimer. A
supermolecule calculation on the dimer (using the
jonic separation taken from the crystal) gives an
interaction energy of —0.261087 E,, including the
very small counterpoise correction. A value of X is
then sought which will give an energy of
—99.720407 E, in a finite-field calculation on
F-[Li*], this being the sum of the SCF energy of

Table 1

Basis set details, SCF energies E and polarizabilities o« for the ions, in atomic units

Ton Li* Na* K* F~ Cl-
Uncontracted basis set 8s 14s9p 18s12p 20s10p4di1f 24s16p4d1f
¢ min 0.5355 0.46162 0.2532 0.1168 0.08148

B, 2.981 2.5434 2.353 2.22 2.1062

&p min 0.312 0.186 0.0615 0.03773

B, 2.4858 2.32 2.545 2.1544

g min 0.05 0.035

By 3.0 32

@, min 0.1 0.1

—-E 7.236005 161.676219 599.016342 99.459320 459.576836
a 10.50 31.34

The basis set parameters a; ,;, and B; are defined in the text.
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free F~ and the interaction energy with Li*. Using
repeated finite-field calculations (Egs. (4) and (5))
and varying K, a value of K = 8.70 is found to give
the required energy to within about 107 E,. The K
parameters obtained are given in Table 2 for each of
the six ion pairs.

Although not the main aim of this work, it is
interesting to compare the dipole moments and polar-
izabilities from the two calculations. For the lithium
halides, the polarizability of the lithium ion is only
about 0.02 atomic units in the dimer basis set, so
both calculations essentially give the anion polariz-
ability directly. The dipole moment of the anion in
the A[B] calculation can also be compared with the
dipole moment of supermolecule AB minus the dipole
due to the lithium cation B (assumed unpolarised).
The results are given in Table 2, where the origin of
the anion dipole u, is at the nucleus of the anion,
and the positive direction of w, is towards the
cation. In general, the prediction of the polarizability
perpendicular to the bond is excellent. The predic-
tions of dipole moment, and of the related polariz-
ability parallel to the bond, are less satisfactory,
especially for LiCl: the model predicts a polarizabil-
ity too close to the free value, and hence a dipole
moment which is too large. For both dimers, the
(somewhat surprising) sign of the polarizability ani-
sotropy is correctly obtained using the model. For
NaF and NaCl, the results for the perpendicular
polarizabilities are equally good, but now the parallel

polarizabilities and dipoles are predicted to be too
small. However, the polarizability of the sodium
cation in the dimer basis set is more than 0.2 atomic
units, and will be present in the supermolecule re-
sults but not the finite-field ones. This reduces the
validity of the comparison. For KF and KCl the
cation polarizability is much larger, and no useful
comparison can be made. Results for KF are shown
in Table 2; supermolecule calculations of the KCl
polarizability were not considered to be worthwhile.

Symmetric linear trimers are considered next, with
an anion placed between two cations at the crystal
separation. In this case the dipole moment is zero,
but the polarizability and the energy can be com-
pared between finite-field A[B,] and supermolecule
AB, calculations. With the same K values, the
prediction of the polarizability improves markedly
relative to the dimer (Table 3), even though dimer
and not trimer properties are used for fitting K. For
B = Li"*, both parallel and perpendicular polarizabili-
ties agree to about 1%. The agreement is less good
for B=Na" than for B=Li*, but some of the
disagreement may be due to the polarizability of the
sodium ion. The ‘interaction emergy’ in Table 3 is
obtained for AB, by subtracting from the total SCF
energy the monomer SCF energies and the (multi-
polar) Coulomb repulsion between the cations, leav-
ing a quantity which is essentially the interaction
energy due to the anion. For the finite-field calcula-
tions it is the difference between the SCF energy of

Table 2

Calculations on ion pairs

Ion pair LiF LiCl NaF NaCl KF KCl1
R 3.7965 4.8566 4.3785 5.2390 5.0512 5.9451
K 8.70 9.08 4.88 4.35 6.76 7.18
o, AB 8.78 30.08 9.90 31.21 10.36

a,, A[B] 9.22 31.03 8.54 2197 8.65

a;, AB 8.50 25.92 9.14 26.93 10.19

a,;, A[B] 8.58 26.05 9.04 26.83 9.36

~p, AB 0.392 0919 0.338 0.800 0.231

— ., A[B] 0.398 0.931 0.296 0.736 0.300

The fitted parameter K is described in the text; R is the internuclear separation; a;, and «,, are polarizabilities parallel and
perpendicular to the internuclear direction; u, is the electronic dipole moment of the polarised anion, as defined in the text; AB and A[B]
denote the supermolecule and overlap model results. All quantities are in atomic units.
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Table 3

Calculations on AB,, AB, and ABg

Ion pair LiF LiCl NaF NaCl KF KCl1
a,, AB, 7.68 27.71 8.83 28.38 10.93

a;, AlB,] 7.78 28.05 7.52 25.73 7.77

o AB, 7.04 22.06 7.94 23.36 10.19

a;, AlB,] 7.05 22.17 7.69 23.20 8.25

-V AB, 0.5046 0.4005 0.4396 0.3673 0.3808 0.3214
-V A[B,] 0.5045 0.4001 0.4411 0.3678 0.3821 0.3227
a A[Bg] 5.30 18.82 5.78 19.08 6.33 19.68
a AB( PP 5.39 18.90 6.0,64 195, 19.8 19.7,24.3
a AB,] 5.99 20.62

a AB4 PP 6.08 20.70

a A[B,]opt 5.44 18.41

a AB,,PP.opt 5.53 18.49

V denotes the interaction energy for the trimer, excluding repulsion between the cations, see the text; the results of Pyper and Popelier
[16] are indicated by PP; opt means that the calculations use the optimal internuclear separation for a 4:4 lattice (R = 3.537 for LiF and
R = 4.436 for LiCl), instead of the separation in Table 2; other notation is defined in Tables 1 and 2.

the anion with, and without, the two cations present.
Again, the prediction of the finite-field calculations
is excellent for trimers involving the lithium ion and
is also very good for NajCl™.

The most useful predictive power of the model is
seen when considering the polarizabilities of anions
in a crystal environment. Direct ab initio results on
the octahedral AB, cluster, corrected for cation po-
larizability, are available in the SCF (and MP2)
approximation for five of the six ion pairs [16], and
finite-field A[B] calculations are performed here for
comparison. Table 3 shows that the prediction of the
anion polarizabilities is remarkably good, especially
for the lithium crystals, for which the published
results are most reliable. The error in the polarizabil-
ity in the sodium and potassium crystals is less than
the discrepancy found by Pyper and Popelier [16]
between their two different corrections for basis set
superposition error. The current result for KgF™ is
also included in Table 3 for information; on the basis
of the other results, it is expected to be quite reliable.

In assessing the overlap model, it is useful to
know how much effect the exchange term has on the
polarizability. If it is removed completely, the in-
crease in anion polarizability is over 2 atomic units
for Li} F~. Doubling the exchange effect (using Eq.
(5) with K for LiF doubled) reduces the polarizabil-
ity from 5.30 to 4.61. Similar results are found for

the other ion pairs. Evidently the value of K is
important. The effect of changing geometry is also
investigated, since all calculations up to this point
have been performed with the same ionic separation
and it might be argued that the value of K will not
transfer well from one geometry to another. Pyper
and Popelier [16] give anion polarizabilities for LiF
and LiCl in a tetrahedral structure with two different
bond lengths. Finite-field calculations on the anions
surrounded by four cations not only give excellent
polarizabilities at both bond lengths (Table 3), but
the derivatives with respect to bond length are repro-
duced exactly, as is the change from sixfold to
fourfold coordination. This gives confidence in the
ability of the overlap model to adapt to different
crystal environments.

3. Discussion

A new method for including intermolecular ex-
change effects in finite-field calculations has been
introduced. It can be applied to the polarisation of a
reference molecule by a neighbour molecule which
is assumed to be largely unaffected by the interac-
tion. This is directly relevant to the interaction of
large, polarisable anions with small, rigid cations in
ionic solids, and may also be relevant to molecular
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modelling studies which treat one molecule quantum
mechanically and the surrounding molecules semi-
classically.

Formally, the charge density overlap model re-
places the exchange of electrons between A and B
by an effective term in the interaction Hamiltonian
which may be written as ¥, K8(r, —r,), where a
is an electron of A, b is an electron of B, and
intermolecular overlap is neglected. The model has
been applied previously to the ground states of the
interacting molecules: this could be regarded as the
first term in a perturbation expansion and it gives as
the first-order exchange energy a term proportional
to the charge density overlap integral between the
monomers. In the current work the theory is ex-
tended to infinite order in the wavefunction of one
molecule. It thus incorporates the effect of exchange
on polarisation, even when considering the very
strong electric fields and large overlap integrals typi-
cal of ionic interactions.

The theory requires an adjustable parameter, X,
to be fitted to experimental or theoretical data. It is
interesting to compare the values obtained in this
work and in other work. Table 1 shows that the
parameter apparently depends markedly on the cation,
but very little on the anion. This may be useful in
estimating values of K for other interactions be-
tween ions where accurate data are not available.
Previously, K has been fitted to experimental data in
obtaining a model for the exchange energy between
water and lithium [17] and sodium [18] ions. Al-
though previous work used only the unperturbed
charge densities, employed different data for fitting,
and considered interactions of a quite different na-
ture, nevertheless the K parameters obtained (10.95
+ 1 for Li*H,O and 3.93 £ 0.8 for Na*H,0) are
relatively constant for the same cation. It seems
significant that X depends mainly on the cation, but
the reason is not known.

It is also noted that the finite-field calculations
described here could also be used to obtain disper-
sion energy coefficients for anion pairs in solids,
with the effect of exchange compression included,
which is an important part of the total lattice energy
for the ionic solid.
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