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Rapid calculation of partition functions and free energies of fluids

Hainam Do, Jonathan D. Hirst,? and Richard J. Wheatley
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

(Received 2 June 2011; accepted 7 October 2011; published online 2 November 2011)

The partition function (Q) is a central quantity in statistical mechanics. All the thermodynamic
properties can be derived from it. Here we show how the partition function of fluids can be cal-
culated directly from simulations; this allows us to obtain the Helmholtz free energy (F) via F
= —kgT In Q. In our approach, we divide the density of states, assigning half of the configurations
found in a simulation to a high-energy partition and half to a low-energy partition. By recursively
dividing the low-energy partition into halves, we map out the complete density of states for a contin-
uous system. The result allows free energy to be calculated directly as a function of temperature. We
illustrate our method in the context of the free energy of water. © 2011 American Institute of Physics.

[doi:10.1063/1.3656296]

. INTRODUCTION

Free energy provides the impetus for change in the nat-
ural world, whether in the formation of protein molecules or
weather patterns, the destruction of cancer cells or the ozone
layer. The estimation of free energies using computer simula-
tion has been an active field for many decades, as it not only
provides mechanistic insight at the atomic level, but also facil-
itates the study of systems not accessible experimentally.'~!!
Knowing the free energy allows one to predict many physical
and chemical phenomena. Methods such as reversible thermo-
dynamic integration* and free energy perturbation'? provide
the difference in the free energy between two states, but can
be prohibitively expensive in terms of computing effort when
applied to systems with large and complex changes, for ex-
ample, calculations of solvation free energies of large solutes
or calculations of the free energy of complex conformational
changes.

Over the last three decades, several methods have
been developed to calculate the density of states, €2, from
which the partition function, and hence, free energy can
be obtained. Histogram reweighting,'>'# transition matrix,'?
multicanonical,> !¢ and Wang-Landau® (W-L) sampling for-
malisms are examples of such methods. The drawback of
these methods is that the density of states is determined
through an iterative scheme. They rely on a histogram of ener-
gies to check the rate of convergence of a simulation, and can
be inefficient when applied to systems with continuous en-
ergy levels. In addition, continuous systems require nontrivial
extension of the original methods, which were designed for
systems with discrete energy levels. A prerequisite is the re-
quirement to discretize the entire infinite energy range. As yet,
a systematic way of doing so has not been proposed. There-
fore, one often has to choose a finite range of energy (either
via trial-and-error or calculation) over which to determine the
density of states.'”?° This allows ensemble average proper-
ties to be calculated, but cannot give an accurate measurement
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of the free energy. Thus, free energy calculations still remain
a big challenge in molecular simulation.

In this paper, we present a Monte Carlo technique that
can systematically discretize a system comprising continuous
energy levels and at the same time provide a direct calcula-
tion of the density of states. We demonstrate our method in
the context of the free energy and vapor-liquid equilibrium of
a molecular fluid (water), as it is difficult to obtain these data
accurately, especially in the two-phase region. The calculated
free energies from our method are compared with those cal-
culated using the W-L sampling scheme. The W-L sampling
is performed on the discretized energy subdivisions that are
created by our method. The simulated vapor-liquid equilib-
rium properties are compared with those obtained from Gibbs
ensemble’! Monte Carlo simulations.

Il. BACKGROUND

To compute the partition function and the free energy for
interacting systems such as fluids, we have to integrate over
all particle positions (r") and velocities (vV) in the system. As
the integration over particle velocities can be solved exactly,
the partition function, in the canonical ensemble Q(N, V, T),
is

ON. V. T) = / expl—BEEIY, (1)

NIA3N
where N is the number of particles in the system. The factor
1/N! comes from the fact that particles are indistinguishable,
A is the thermal de Broglie wavelength, E is configurational
energy, B is 1/kgT, kg is the Boltzmann constant, and T is the
temperature of the system. For large systems with strong in-
teractions between particles, the configurational space is enor-
mously large and it is not possible to evaluate the integral
in Eq. (1).

To introduce our algorithm, we write Eq. (1) in reduced
coordinates (s = r/L) as

N

ON,V,T)= NIAN

1
f exp[—BE(s")lds", 2)
0
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where L is the length of the cubic simulation box and V (V
= L%) is the volume of the box. The term VV/(N!A3) in
Eq. (2) is the partition function of an ideal gas, and can be
calculated analytically. Thus, we seek to compute the excess
part of the partition function (Q,,), which is the Boltzmann
factor averaged over all phase space:

1
0. = / expl—BE(s")1ds". 3)
0

The probability of a configuration having an energy E is
proportional to the density of states, Q2(E), where Q(E)

= Jiy 8(E — E(sV))ds", and we can express O, as

/00 exp(—BE)Q(E)dE
Qex - == oC 9 (4)
f QE)JE

o

where the integral is over all possible energies of the system.
Equation (4) shows that if the density of states is known, the
excess partition function can be calculated from it. In fact,
Q(E) contains even more information than Q and it may be
possible to extract kinetic information from it, such as energy
barrier crossing rates, which are important in the studies of
systems with complex free energy landscapes, including pro-
teins, polymers, and glasses. Moreover, as €Q(F) is indepen-
dent of the temperature, the excess partition function can be
obtained as a function of temperature from a single simula-
tion. Equation (4) requires that we know both Q(E) at high
energy, which contributes most to the denominator, and €2(F)
at low energy, which contributes most to the numerator of Q..

lll. THE PARTITIONING METHOD

We now describe our method of discretizing the energy
range and simultaneously obtaining the integrated normal-
ized density of states for each energy subdivision. We need
to subdivide the energy range more finely at low energy
(Figure 1), as the Boltzmann factor changes rapidly there.
At high energy, the subdivisions can be larger, as the only
consideration is the density of states integrated over the
subdivision. We divide the energy range recursively into
subdivisions (indexed m), such that the integrated normalized
density of states flf”‘" Q(E) dE/f_x;C Q(E)dE equals 1/2!
for the first subdivision (m = 1, E; < E < Ey, Ey = 00), 1/22
for the second subdivision (m = 2, E, < E < E;), and so on
down to 1/2" for the two lowest energy subdivisions (m = n,
E,<E<E, jandm=n+1,-00 <E < E,), where n is
the number of energy boundaries. Energy boundary 1 (E)) is
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FIG. 1. Sketch (not to scale) explaining the partitioning of the density of
states. n is the number of energy boundaries. Numbers denote the integrated
normalized density of states over each subdivision.

found first by division of the entire energy range. Then energy
boundary 2 (E5) is found by division of the energy range from
—oo to Ey, and so on, to the last energy boundary n (E,), which
is found by division of the energy range from —oo to E,,_;.
For the mth division of the density of states (to produce
energy boundary E,,), Monte Carlo sampling is performed.
The first division of the energy, m = 1, does not employ any
weighting function (random sampling). The subsequent ones
are performed with a weighting function w(E) = 4’ (the choice
of this weighting function will be explained later in Sec. IV),
where i is the energy subdivision into which the configura-
tional energy E falls (1 <i<m),suchthatE; < E < E;_| (Ey
= 0, E,;, = —o0). The maximum translational move is set to
a quarter of the length of the simulation box at the start of the
simulation. The acceptance rate of any move is 100% for the
first division regardless of the size of the move because ran-
dom sampling is employed. It then decreases as m increases.
Once m becomes large enough for the acceptance rate to drop
to 20%, the maximum displacement is automatically adjusted
after each energy division to keep an acceptance rate of about
20% throughout the rest of the simulation. Table I shows
an example of the relative number of configurations H(E)
expected to occur in each energy subdivision during the 5th

TABLE I. Example showing the relative number of configurations H(E) expected to occur in the first five energy subdivisions, during the 5th division of the

energy (m = 5). The weighting applied in each subdivision is w(E).

Subdivision i 5 4 3 2 1
Energy range —oc — E4 Ey — E3 E; — E, E, - E; E| — oc
jﬁ'-' Q(EYAE/ [, Q(E)dE 274 274 273 272 271
w(E) = 4 P 44 43 42 4
H(E)=w(E) (j;;"*‘ Q(E)AE/ %, Q(E)dE) 64 16 8 4 2
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division of the energy (to produce energy boundary Es). The
sum of the geometric series in subdivisions 1 to 4 (all apart
from the lowest energy subdivision) is 30, and in general it
is less than half of the value of H(E) in the lowest energy
subdivision (here 64). Thus, this weighting function (4')
ensures that at least 2/3 of the configurations of the system
are expected to be in the current lowest energy subdivision
(subdivision 5 in this example). Once sufficient data are
collected (30 000 configurations) in the lowest energy
subdivision, the next energy boundary E,; is set equal to
the median configurational energy found in the lowest energy
subdivision —co < E < E,,,.

IV. SIMULATION DETAILS

The choice of the number of configurations used to de-
termine each energy boundary and the choice of weighting
function will influence the efficiency and accuracy of the sim-
ulations. Fewer configurations and a steeper weight function
give faster calculations. However, this must be balanced with
the accuracy. We first consider the effect of the number of
configurations used to determine each energy boundary for
our system of interest (300 water molecules) in both the lig-
uid and the two-phase regions (Figures 2 and 3). The potential
used for the water molecules and the simulation conditions
are given in Sec. V. Successive configurations differ by an at-
tempted move of one random molecule. These figures show
that in the early stage of the partitioning process (first few
hundred partitions), as few as 3000 configurations could be
used to determine each energy subdivision, but the standard
deviations are large (Figures 2(a) and 3(a)). As the number of
energy subdivisions grows, the simulations require more con-
figurations to equilibrate. So, to avoid a systematic error, we
have to employ at least 18 000 configurations for the liquid
phase (Figure 2(b)) and at least 27 000 configurations for the
two-phase region (Figure 3(b)). Overall, the excess partition
function is most accurately calculated with at least 18 000
configurations for the liquid phase (Figure 2(c)) and at least
27 000 configurations for the two-phase region (Figure 3(c)).
Thus, for a system of 300 water molecules, we find that
30 000 configurations are reasonable (based on the informa-
tion given in Figures 2 and 3) for each division of the energy.

A biased weighting function is necessary in our algorithm
to speed up the calculations. If no biased weighting function
were used (W(E) = 1), which is done for the first division of
the energy, then we would hardly ever visit the low-energy re-
gion. On the other hand, too steep a weighting function could
reduce the flexibility of the system to explore the configura-
tional space. Every energy subdivision can be visited an equal
number of times by employing w(E) = 2/ (apart from the
lowest energy subdivision, which is visited twice as often).
This still leads to inadequate sampling of the lowest energy
subdivision when there are hundreds of subdivisions. Thus,
a weighting function steeper than 2’ needs to be employed.
For example, with w(E) = 3’ or w(E) = 4/, about 1/2 or 2/3
of the total configurations are expected to be in the lowest
subdivision, respectively. The steeper the weighting function
is, the more configurations are in the lowest energy subdivi-
sion. Figure 4 shows that the energy boundaries and excess
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FIG. 2. Effect on the partitioning method of the number of configurations
used to determine each energy boundary (liquid phase p = 1000.0 kg/m?).
(a) Errors in selecting the energy boundary in the high-energy region. (b)
Errors in selecting the energy boundary in the low-energy region. (c) Errors in
the excess partition function. The total number of energy boundaries required
under these conditions is about 3800. The standard deviations are determined
by performing a set of 15 different simulations.

partition function can be accurately calculated with a very
steep weighting function (up to w(E) = 32%) for 300 water
molecules. However, the error bars are generally bigger for
steeper weighting functions. To give the system the flexibil-
ity to explore the configurational space, we should employ a
weighting function that is not too steep. A weighting function
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FIG. 3. Effect on the partitioning method of the number of configu-
rations used to determine each energy boundary (two-phase region p
=15.0 kg/m?). (a) Errors in selecting the energy boundary in the high-energy
region. (b) Errors in selecting the energy boundary in the low-energy region.
(c) Errors in the excess partition function. The total number of energy bound-
aries required under these conditions is about 5500. The standard deviations
are determined by performing a set of 15 different simulations.

w(E) = 4' gives us good balance between the efficiency and
accuracy of the simulations.

We note that Q(E) strongly increases with energy
(except at very high energy), exp(—pE) strongly decreases
with energy, and the function Q(E)exp(—pE) is peaked
around an average energy. We stop dividing the energy once

J. Chem. Phys. 135, 174105 (2011)
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FIG. 4. Effect on the partitioning method of the choice of weighting function
(liquid phase p = 1000 kg/m?). (a) Errors in selecting the energy boundary
in the high-energy region. (b) Errors in selecting the energy boundary in the
low-energy region. (c) Errors in the excess partition function. w(E) = x/, if
energy E is in subdivision i. The total number of energy boundaries required
under these conditions is about 3800. The standard deviations are determined
by performing a set of 15 different simulations.

we reach a point where Q(E)exp(—pE) is much smaller
than [Q(E)exp(—BE)]lmax- We find that Q(E)exp(—pBE)
= 107°[Q(E)exp(—BE)|max is sufficient. This stopping
criterion is temperature-dependent and we use the lowest
temperature of interest, in order to cover all the important
parts of the energy range. The excess partition function is
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obtained from the normalized integrated density of states as

S (" Q(EYE) exp (—B (E),,)
Yoot T QENE

m=n+1 me _ E
_ e Zm:nixlpz(_mﬂ( ). 5)

m=1

Qex =

where (E),, = (E, + E,_1)/2. For the first (m = 1) subdivi-
sion (Figure 1), we set (E),, = Ej, and for the last (m = n
+ 1) subdivision we set (E},, = E, and replace 27" by 27".

V. CASE STUDY FOR WATER

In this work, we calculate the partition function, free
energy, and vapor-liquid equilibrium properties of water, as
an example of a real molecular fluid of interest. The SPC-E
model?? for water is employed. The fluid is simulated in a
cubic box with periodic boundary conditions. A spherical
cut-off of half of the length of the simulation box is used
to truncate the Lennard-Jones interactions. A long-range
correction for the % term (tail correction)?® is used: Egy
= —64mpec®/3V, where p is the density of molecules
in the simulation box. The +~'2 term decays rapidly with
distance, so a correction for this term is unnecessary. Ewald
summation with the tinfoil boundary condition is used to
calculate the electrostatic interactions.?* For 300 water
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FIG. 5. log(Q(E)exp(—pE)) versus energy (a) and partition number (b) for
300 water molecules at T = 298 K and p = 1000 kg/m?.
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FIG. 6. Helmholtz free energy per particle versus volume per particle for
300 water molecules at (a) 323.15 K and (b) 373.15 K. Insets show a mag-
nification of the local minima. The error bars are too small to show on the
plot. The standard errors are determined by performing a set of 15 different
simulations for each density. In most cases, the standard errors are between
0.2% and 0.3%.

molecules at 298.15 K and a density of 1000 kg/m>, the
maximum value of log[Q(E)exp(—pBE)] is 3289.25, and
occurs at an energy of —46.83 kJ/mol and energy boundary n
= 3432 (Figure 5). The partitioning for this system stopped
when log[Q2(E)exp(—BE)] reached 3268.24, at an energy of
—49.21 kJ/mol and energy boundary n = 3878.

After the partitioning process is complete, the entire
energy range has been discretized into n + 1 energy sub-
divisions. The excess partition function is obtained using
Eq. (5) and the excess free energy (Fex) is obtained from Fex
= —kgT InQc. The density dependence of the ideal gas free
energy is Fig = —kgT Inp, and the total density-dependent
part of the free energy is Fex + Fiq. Figure 6 shows the free
energy (Fex + Fiq) per particle versus volume per particle for
300 water molecules. The coexisting volumes are determined
by constructing a double tangent. The coexisting pressure is
the slope of this tangent line (—dF/dV). The latent heat of
vaporization equals ({E),qp — (E)iig) + p(Viap — Viig), where

St E), 27 exp (—B (E),,)

(E) = -
Yt omexp (=B (E),,)
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FIG. 7. A comparison between the Helmholtz free energy per particle calcu-
lated using our method (circles) and W-L method (pluses) for different den-
sities at 323.15 K. The calculations were performed for systems of 64 water
molecules. The error bars for our method are too small to show. Values from
W-L simulations are recorded at the last convergence factor f (f < 10~%).

Given the energy subdivisions created by our method, we
can also perform a W-L sampling to estimate the integrated
density of states of each energy subdivision. Note that per-
forming a W-L sampling here is redundant, as the integrated
density of states of each subdivision have already been deter-
mined during the energy partitioning process (27"). However,
we perform W-L sampling here to compare the accuracy and
efficiency of the two methods. At the start, a constant inte-
grated density of states is assumed for all subdivisions. Every
time a subdivision is visited, its integrated density of states is
multiplied by a convergence factor f, where f = e(2.72) at the
start. An energy histogram H(E) of the energy subdivisions
is accumulated during the course of the simulation. When
H(FE) becomes sufficiently flat (the subdivision with minimum
number of hits is within 80% of the mean number of hits per
subdivision), f is reduced to ./f and H(E) is reset to zero. The
simulations stop when f < 1073, Figure 7 shows a compari-

TABLE II. Number of configurations (Nconfig) required by our partitioning
method, and that required by the W-L method (excluding the effort in dis-
cretizing the energy levels), at different densities in the liquid phase of water,
for a system of 64 molecules.

Number density

(A3 NDariome /100 Nogriel 106
0.020 27.30 5600
0.022 28.11 11 850
0.024 27.57 8660
0.026 27.63 3920
0.028 29.19 23900
0.030 28.86 14 370
0.036 29.43 7070
0.040 29.46 12 550

J. Chem. Phys. 135, 174105 (2011)

son of the free energies calculated by our method and the W-L
method for different densities in the liquid phase of water at
323.15 K. The results from our method agree very well with
those obtained using W-L sampling. Since the W-L algorithm
involves an iterative scheme, it is highly inefficient compared
to our method. In the best case, the W-L method still requires
over 100 times the number of configurations required by our
method and this number can rise as high as a factor of about
1000 in some cases (Table II).

To validate our method further, we also show that
the vapor-liquid equilibrium properties calculated using our
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FIG. 8. Vapor-liquid coexistence densities (a), temperature-pressure equilib-
rium curve (b), and the latent heat of vaporization (c) of water (using the SPC-
E model): our method (circles) and Gibbs ensemble simulations (pluses).
Both methods employ 300 water molecules.
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method agree well with those calculated by the Gibbs en-
semble technique using in-house software (Figure 8). As the
Gibbs ensemble technique is temperature-dependent, its ef-
ficiency depends on the number of state points that are re-
quired to be calculated. Our method, on the other hand,
is temperature-independent and does not suffer from this
shortcoming.

VI. CONCLUSION

The proposed method provides the density of states
without iteration, and is much more efficient than the W-L
approaches. Moreover, our method is more robust than
the W-L method when dealing with continuous systems,
as it accompanies a systematic scheme to discretize the
continuous energy levels so that the important aspects of the
configurational space are included. The excess partition func-
tion and free energy are obtained directly from the density of
states. Our method simplifies the process of calculating free
energies of continuous systems, and could have an impact in
many applications, including the study of phase equilibria,
solvation free energy, nucleation dynamics, protein folding,
and DNA folding. The method can be easily extended to
study systems with discrete energy levels, for which there are
also a large number of applications, including spin glasses
and lattice models of proteins and polymers.
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