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ABSTRACT: It is challenging to compute the partition function
(Q) for systems with enormous configurational spaces, such as fluids.
Recently, we developed a Monte Carlo technique (an energy
partitioning method) for computing Q [J. Chem. Phys. 2011, 135,
174105]. In this paper, we use this approach to compute the
partition function of a binary fluid mixture (carbon dioxide +
methane); this allows us to obtain the Helmholtz free energy (F) via
F = −kBT ln Q and the Gibbs free energy (G) via G = F + pV. We
then utilize G to obtain the coexisting mole fraction curves. The
chemical potential of each species is also obtained. At the vapor−
liquid equilibrium condition, the chemical potential of methane significantly increases, while that of carbon dioxide slightly
decreases, as the pressure increases along an isotherm. Since Q is obtained from the density of states, which is independent of the
temperature, equilibrium thermodynamic properties at any condition can be obtained by varying the total composition and
volume of the system. Our methodology can be adapted to explore the free energies of other binary mixtures in general and of
those containing CO2 in particular. Since the method gives access to the free energy and chemical potentials, it will be useful in
many other applications.

1. INTRODUCTION
Knowing the free energy allows many physical and chemical
phenomena to be predicted. The calculation of free energy
from theory has been an active field for many decades, yet
remains a challenging problem. Methods such as free energy
perturbation theory1−3 and thermodynamic integration3,4 are
frequently used to determine the free energy difference
between two states (states I and II for example), and rely on
calculations along a path from state I to state II. These states
can be characterized by either different potential energy
functions or different structures. Systems where states I and
II are far apart, with large and complex changes in structure, can
require a complicated path between states and can be
prohibitively expensive in terms of computing effort. Thus, it
is important to develop methods that can provide the free
energy for each state I and II independently; in this case, the
free energy difference can be calculated even for significantly
different states because the integration path is avoided.
Methods such as minima mining,5−7 hypothetical scanning,8−11

harmonic reference state,12,13 and nondynamic growth14−16 have
made promising progress toward this goal. However, the
efficiency of these techniques deteriorates rapidly with the size
and the complexity of the system.
Elegant approaches for calculating free energies via the

density of states have been developed in the past few decades,
including umbrella sampling,17 the weighted histogram analysis
method (WHAM),18,19 transition matrix,20 muticanonical,21

and Wang−Landau22 sampling. The idea behind these
techniques is either to perform multiple simulations, whose

samplings overlap in configurational space and connect them
together (reweight) or to perform the simulations in biased
ensembles to achieve broader sampling of particular states that
are rarely visited. If the Wang−Landau technique is employed
for systems with an infinite energy range, such as fluids, one
often has to choose a finite range of energy (cutting off the
high-energy range) either via trial and error or by
calculation.23−26 WHAM also uses a finite range of energies.
Restricting the density of states to a finite energy range means
that the partition function can only be computed to within a
multiplicative constant.
To circumvent these limitations, we have recently developed

an “energy partitioning”Monte Carlo (MC) technique,27 which
can calculate the “absolute” density of configurational energy
states with no high-energy cutoff, from which the excess
partition function, and hence the excess free energy of a
molecular fluid, can be obtained. The absolute free energy can
be calculated by adding the ideal gas free energy to the excess
free energy.
Phase equilibrium properties of model systems and real fluids

are of tremendous importance to scientists and engineers. Since
the measurement of phase equilibrium properties is time
consuming and expensive, computer simulation based on
molecular modeling is a promising alternative. Free energy can
be used to predict the vapor−liquid equilibrium properties and
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many other thermodynamic properties, including critical
phenomena and pVT data for single phases. Of particular
interest to us are mixtures that contain carbon dioxide
(CO2).

28−33 Systems of CO2 in multicomponent mixtures
with light paraffins are important to the natural gas industry,
since it has become common practice to process gas streams
with moderate to high levels of CO2. Supercritical CO2 is a
novel solvent that has attracted much attention.34 A property of
interest is the unusually high solubility of fluorinated
hydrocarbons in supercritical CO2. Mixtures of hydrofluor-
ocarbons and CO2 are possible replacements for ozone-
depleting refrigerants. Thus, knowledge of the phase equili-
brium properties of these mixtures can help optimize their
performance in industrial processes.35

In this paper, we calculate the partition function and free
energy of the binary mixture CO2 + CH4. Mixtures of CO2 with
other small molecules (and other binary mixtures) can be
studied analogously. Using the free energy, the vapor−liquid
equilibrium properties and the critical points of the mixture are
calculated. The chemical potentials of each species are extracted
from the free energy. The critical point is observed from a plot
of the Helmholtz free energy versus volume.

The paper is organized as follows. In section 2, we describe
the theoretical background of the energy partitioning approach.

In section 3, we outline the simulation procedure. In section 4,
we present results for the partition function, free energy, and
vapor−liquid equilibrium properties of the CO2 + CH4 mixture.

We obtain the vapor−liquid equilibrium properties from the
free energies, and compare our results with experimental data.
We also compare our results with a conventional MC (Gibbs

ensemble) simulation technique and demonstrate the advan-
tages of our method compared to this approach. Finally, in
section 5, we give concluding remarks and outline future work.

2. METHOD

2.1. Free Energy and Partition Function. The free

energy of a system in the canonical ensemble is given by F =
−kBT ln Q(N,V,T), where Q(N,V,T) is the partition function of
the system, which is the integral of the Boltzmann factor

exp(−βE) over particle positions (rN) and momenta (pN). As

Figure 1. Sketch (not to scale) explaining the partitioning of the density of states (a) at the start of the simulation, where there is only one energy
subdivision; (b) after placing the first energy boundary; (c) after placing the second energy boundary; and (d) after placing the nth energy boundary.
w(E) is the weighting function and int Ω(E) is the integrated normalized density of states.
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the integration over particle momenta can be solved exactly, the
canonical partition function can be expressed as

∫=
!Λ

−βQ N V T
N

E r r( , , )
1

exp[ ( )] dN
N N

3 (1)

where N is the number of particles in the system. The factor 1/
N! comes from the fact that particles are indistinguishable, Λ is
the thermal de Broglie wavelength, E is configurational energy,
β is 1/kBT, kB is the Boltzmann constant, and T is the
temperature of the system. Unlike other equilibrium
thermodynamic properties, such as the internal energy, that
can be estimated as a time or ensemble average, the Helmholtz
free energy F is related directly to the volume of the
configurational space (as shown in eq 1), and calculating F
still remains a challenge in molecular simulation.
Equation 1 can be rewritten in the form of reduced

coordinates (s = r/L) as

∫=
!Λ

−βQ N V T
V

N
E s s( , , ) exp[ ( )] d

N

N
N N

3 0

1

(2)

where L is the length of the cubic simulation box, which
contains N molecules, and V is the volume of the box. The term
VN/(N!Λ3N) in eq 2 is the translational partition function of an
ideal gas and can be calculated analytically. Thus, we seek to
compute the “excess” part of the partition function (Qex)

∫= −βQ E s sexp[ ( )] dN N
ex 0

1

(3)

The probability of finding an energy E is proportional to the
density of states, Ω(E), where Ω(E) = ∫ 0

1 δ(E − E(sN)) dsN.
Thus, Qex can be expressed more conveniently as

∫
∫

=
−β Ω

Ω
−∞
∞

−∞
∞Q

E E E

E E

exp( ) ( ) d

( ) dex
(4)

where the integral is over all possible energies of the system.
Equation 4 shows that if the density of states is known, the
excess partition function can be calculated from it. Our goal is
to calculate the density of states and hence Qex.
2.2. Calculation of the Density of States. The aim of the

energy partitioning method is to divide the energy range
recursively into subdivisions (indexed m), such that the
integrated normalized density of states ∫ Em

Em−1Ω(E) dE/
∫ −∞

∞Ω(E) dE is 1/21 for the first energy subdivision (m = 1,
E1 ≤ E ≤ E0, E0 = ∞) (Figure 1d), 1/22 for the second
subdivision (m = 2, E2 ≤ E ≤ E1), and so on down to 1/2n for
the two lowest-energy subdivisions (m = n, En ≤ E ≤ En−1 and
m = n + 1, −∞ ≤ E ≤ En).
At the start of the simulation, there is only one energy

subdivision (Figure 1a). All MC moves are accepted at this
stage (random sampling), and the sampled energies are saved.
After a predetermined number of MC moves (usually several
thousand), the energy range −∞ ≤ E ≤ ∞ is divided: the first
energy boundary E1 is set equal to the median configurational
energy. The choice of the number of MC steps used in each
division of the energy is explained in section 3. After the first
division of the energy (Figure 1b), there are two energy
subdivisions with the same integrated density of states (1/2 and
1/2). We then throw away all the sampled energies and move
on to the second division of the energy.

During the second division of the energy (Figure 1b), MC
moves are accepted based on a biased weighting function w(E)
= 4m, where m is the energy subdivision into which the
configurational energy E falls so the weighting functions for the
energy subdivisions 1 (E > E1) and 2 (E ≤ E1) are 41 and 42,
respectively. These biased weighting functions are necessary to
push the system toward the low-energy region; the energy
subdivision 2 is visited four times as often on average as the
energy subdivision 1. After the same predetermined number of
MC moves as above, the second energy boundary E2 is set
equal to the median configurational energy found in the lowest-
energy subdivision −∞ ≤ E ≤ E1. This produces three energy
subdivisions with the integrated density of states equal to 1/2,
1/4, and 1/4 for the highest energy, middle, and lowest energy,
respectively (Figure 1c). Then the sampled energies are
discarded once again and the third division of the energy starts.
During the third division of the energy (Figure 1c), the

weighting for each energy subdivision is 41, 42, and 43 for the
highest-energy, middle, and lowest-energy subdivision respec-
tively, which means that the lowest-energy subdivision
(subdivision 3) is visited four and eight times as often on
average as the subdivisions 2 and 1 respectively. At the end of
the MC procedure, the third energy boundary E3 is set equal to
the median configurational energy found in the lowest-energy
subdivision −∞ ≤ E ≤ E2. There are now four energy
subdivisions with the integrated density of states equal to 1/2,
1/4, 1/8, and 1/8 for the highest-energy to the lowest-energy
subdivisions respectively.
The procedure continues iteratively. In general, for the nth

division of the density of states (to produce energy boundary
En, n ≥ 2), MC sampling is performed with a weighting
function w(E) = 4m for the previously calculated subdivisions, 1
≤ m ≤ n (subdivision 1 being the highest energy). The
weighting function is essential to speed up the simulations; it
ensures that about 2/3 or more of the configurations of the
system fall into the current lowest-energy subdivision.27 The
probability of accepting a move from an old state with
configurational energy Eold that falls into subdivision mold, to a
new state with configurational energy Enew that falls into
subdivision mnew, is given by

→ = =
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟P

w E
w E

(old new) min 1,
( )
( )

min 1,
4
4

m
m

new

old

new

old

(5)

At the end of the predetermined number of MC moves, the
energy boundary En is set equal to the median configurational
energy found in the lowest-energy subdivision −∞ ≤ E ≤ En−1
and all sampled energies are discarded. The simulation is
repeated for the next division of the energy until it is
terminated.
The density of states Ω(E) strongly increases with energy

(except at very high energy), exp(−βE) strongly decreases with
energy, and the function Ω(E) exp(−βE), which is integrated in
eq 4 to get Q, has a maximum at an average energy. Since this
average energy is not known, the number of energy boundaries
is not fixed in advance. It is found during the simulation using
the criterion that when the integrated function [∫ [Ω(E)
exp(−βE) dE]m] for the current lowest-energy (mth) sub-
division is much smaller than its maximum value over all energy
subdivisions, [∫ [Ω(E) exp(−βE) dE]max], the simulation can
be terminated, as nothing would be gained by further
subdividing the density of states. A stopping criterion of
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[∫ [Ω(E) exp(−βE) dE]m] = 10−9[∫ [Ω(E) exp(−βE) dE]max]
is used. This is temperature dependent, and we use the lowest
temperature of interest, in order to cover all the important parts
of the energy range.
Once the simulation is finished, the excess partition function

is obtained from the normalized integrated density of states as
(cf. eq 4)

∫

∫
=

∑ Ω −β⟨ ⟩

∑ Ω

=
∑ −β⟨ ⟩

∑

=
− +

=
− +

=
− + −

=
− + −

−

−
Q

E E E

E E

E

( ( ) d ) exp( )

( ( ) d )

2 exp( )

2

m
m n

E
E

m

m
m n

E
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m
m n m

m
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m n m

ex
1
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1
1

1
1

1
1

m
m

m
m

1

1

(6)

where ⟨E⟩m = (Em + Em−1)/2. For the first energy subdivision
(m = 1), ⟨E⟩m is set equal to E1, and for the last energy
subdivision, ⟨E⟩m is set equal to En. Also, in the last energy
subdivision, 2−m is replaced by 2−n, as the normalized integrated
density of states of the two lowest-energy subdivisions are the
same and equal to 2−n. Errors produced in this application by
introducing ⟨E⟩m are negligible. However, more care would be
needed if very few energy subdivisions were found.
2.3. Intermolecular Potentials. The quality of the results

of a computer simulation depends on the potential models
describing the interactions between the molecules of the
studied substances. Much effort has been devoted to the
development of an accurate potential for CO2. In our
simulations, the rigid fixed-point charge elementary physics
model (EPM) is employed, due to its widespread use.36 In
general, one would not expect force fields to predict properties
accurately at high pressure. However, the EPM model performs
reasonably well under moderately high pressure (<200
bar).37,38 To enable combination with the CO2 model,
potentials for CH4 with the same functional form are required.
The transferable potentials for phase equilibrium with explicit
hydrogen atoms (TraPPE-EH) model39 is used for CH4: the
CH4 molecule has five Lennard-Jones interaction sites, which
are located at the carbon atom and the centers of the CH
bonds. For Lennard-Jones interactions between unlike atoms,
the Lorentz−Berthelot combining rules are used.

3. SIMULATION DETAILS
A series of simulations are performed at different total mole
fractions and densities to calculate the excess partition functions
of the mixture under these conditions. The results are a set of
Qex at different compositions ranging from the vapor phase to
the liquid phase (passing through the two-phase region). The
Gibbs free energy is obtained directly from Qex (G = −kBT ln
Qex + pV) and utilized to obtain the coexisting mole fraction
curves at constant pressure. More details about this are given in
section 4. At the start of each simulation, 300 molecules with
the desired total mole fraction are inserted randomly into a
cubic periodic box of fixed volume. 45 000 MC steps are
employed for each partition of the energy. Each MC step
involves either a translational move or a rotational move of a
single molecule with the same probability. At the beginning of
the simulation, the maximum displacement of a translational
move is set to L/4 and that of a rotational move is set to 180°.
The acceptance rates of both moves are 100% during the first
division of the energy (as implied by the weighting function).
They then decrease as the number of energy subdivisions, m,

increases. Once m becomes large enough for the acceptance
rates to drop to 30%, the maximum displacements are adjusted
automatically after each energy division to keep acceptance
rates of about 30% throughout the rest of the simulation.
A spherical cutoff of half of the length of the simulation box

is used to truncate the potential energy. Thus, a long-range
correction for the dispersion r−6 term (tail correction)3 is used.
The r−12 term decays rapidly with distance, so a correction
for this term is unnecessary. The CO2 and CH4 molecules
are nonpolar; the quadrupole−quadrupole interactions are
sufficiently short range that a long-range correction for the
electrostatic energy is not needed. This has been examined and
confirmed in our previous study on this system.31

The efficiency and accuracy of the simulations depend on the
choice of the number of MC steps used in each partition of the
energy. Fewer MC steps give faster calculations but lower
accuracy. Figure 2 shows the effect on the accuracy of the

Figure 2. Effect on the partitioning method of the number of MC
steps used in each partitioning of the energy (50% CO2 and 50% CH4
at number density = 0.019 Å−3). (a) Errors in selecting the energy
boundary in the high-energy region. (b) Errors in selecting the energy
boundary in the low-energy region. (c) Errors in the excess partition
function (at 230.15 K). The total number of energy subdivisions under
these conditions is about 2370. The standard deviations are
determined by performing a set of 15 different simulations.
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method of the number of MC steps used to determine each
energy boundary. In the early state of the partitioning process
(the first few hundred partitions), 10 000 or fewer MC steps
could be used (Figure 2a), but as the number of energy
subdivisions grows, at least 18 000 MC steps are needed, as the
simulations take longer to equilibrate (Figure 2b). If fewer than
18 000 MC steps are employed in the low-energy region, a
systematic error occurs. The excess partition function is most
accurately calculated with at least 18 000 MC steps (Figure 2c).
In the rest of this work, 45 000 MC steps are used. To speed up
the calculations, fewer MC steps could be used in the high-
energy region than in the low-energy region, but we have not
investigated this possibility further.
In the first iteration of the simulation, all 45 000 MC steps

are in the lowest-energy subdivision, which spans the entire
energy range (Figure 1a). In the second iteration, the weighting
between the energy subdivision 1 (m = 1) and the energy
subdivision 2 (m = 2) is 1:4 and, therefore, we expect 1/5 of
the total MC steps (≈9000) to be in the high-energy
subdivision and 4/5 of the total MC steps (≈36 000) in the
low-energy subdivision. The energy boundary E2 is drawn from
the ≈36 000 MC steps in the low-energy subdivision. In the
third iteration, the ratio between the weighting of the energy
subdivisions 1, 2, and 3 (lowest-energy) is 1:4:16 and the
integrated density of states is 2:1:1. Thus, we expect to collect
2/22 (≈4091), 4/22 (≈8182), and 16/22 (≈32 727) of the
total MC steps in the energy subdivisions 1, 2, and 3,
respectively. The energy boundary E3 is the median configura-
tional energy found in the ≈32 727 MC steps in the lowest-
energy subdivision. As the number of energy subdivisions
increases, about 2/3 (≈30 000) MC steps are found in the
current lowest-energy subdivision, as dictated by the weighting
function, and the energy boundary En is set equal to the median
configurational energy found in the lowest-energy subdivision.

4. RESULTS AND DISCUSSION

The calculated density of states is used to obtain the partition
function, free energy, vapor−liquid equilibrium properties, and
chemical potential of the binary mixture CO2 + CH4. After the
partitioning process, the entire energy range (for a fixed
composition and volume) has been discretized into n + 1
energy subdivisions (see Figure 1). The excess partition
function is obtained using eq 6, and the excess Helmholtz
free energy (Fex) is calculated using Fex = −kBT ln Qex. The
density dependence of the ideal gas free energy (Fid) is
calculated using Fid = kBT(xCO2

ln ρCO2
+ xCH4

ln ρCH4
), where x

is the mole fraction and ρ is the number density. The density-
dependent part of the absolute free energy is the sum of the
excess part and the ideal gas part (F = Fex + Fid). The Gibbs free
energy is G = F + pV, where p is the pressure and V is the
volume of the system. Figure 3 shows the Gibbs free energy per
particle versus volume per particle for CO2 + CH4 mixtures at
230.15 K, 20.92 bar and 250.15 K, 38.36 bar. This shows the
preference for each phase of the system under different
conditions. For example, at 230.15 K and 20.92 bar (Figure 3a),
the liquid phase is favored (a lower minimum in the free
energy) when there is no CH4 present. When the mole fraction
of CH4 is 0.2, two minima are observed, but the liquid phase is
still favored. As the total mole fraction of CH4 increases, the
vapor phase becomes favored. The liquid phase is less favored
and disappears when the mole fraction of CH4 reaches about
0.6; i.e., the critical composition is reached for this temperature.

Similar observations can also be made at other conditions, for
example, at 250.15 K and 38.36 bar (Figure 3b).
Using the minima in Figure 3, a plot of the Gibbs free energy

versus the composition for both phases is constructed, from
which the vapor−liquid equilibrium compositions are deter-
mined (Figure 4). The coexisting compositions are determined
by constructing a double common tangent connecting both
phases. The chemical potential for each species at any
composition can be calculated by taking G and dG/dx from
Figure 4 and solving the simultaneous equations

μ + μ =

= μ − μ

α α α α α

α α α α

⎧
⎨⎪
⎩⎪

x x G

G xd /d

1 1 2 2

1 1 2 (7)

for μ1 and μ2, where μ is the chemical potential and α can be
either vapor or liquid phase.
The phase diagram (pressure versus composition) of the

binary mixture CO2 + CH4 is extracted from Figure 4 and
plotted in Figure 5, with results from experiment40 and from
the Gibbs ensemble technique.31 The Gibbs ensemble
technique is temperature-dependent. Its efficiency depends on
the number of state points that are required to be calculated.

Figure 3. Gibbs free energy per particle versus volume per particle of
CO2 + CH4 at different compositions: (a) 230.15 K and 20.92 bar and
(b) 250.15 K and 38.36 bar. The standard errors are determined by
performing a set of 15 different simulations for each volume. In most
cases, the errors in G/N are between 0.4% and 0.7%. For the sake of
clarity, the plots at the compositions of CH4 equal to 0.0, 0.2, 0.4, 0.6,
and 0.8 are offset by −5, −3.5, −2.5, −1.5, and −0.5 kJ/mol,
respectively.
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The energy partitioning method, on the other hand, is
temperature-independent and does not suffer from this
shortcoming. The vapor−liquid equilibrium properties com-
puted using both simulation techniques agree well to within the
statistical uncertainties of the simulations apart from a couple of
points at low pressure. This discrepancy is, perhaps, due to the
errors in fitting the curves and placing the double tangent lines.
Reasonable agreement between experimental data and
simulations is achieved for the liquid phase at both temper-
atures. However, the simulations slightly overestimate the
solubility of CH4 in the vapor phase, which is due to the
limitation of the force fields. This has been discussed in our
previous work.31

Due to the finite size effect, the Gibbs ensemble technique
cannot be used near the critical point. Using the energy
partitioning method, we observe the occurrence of the critical
point by constructing a plot of the Helmholtz free energy
versus the volume of the system. Figure 6 shows such plots for
mixtures of CO2 + CH4 at 230.15 and 250.15 K. The critical
point occurs when the second and third derivatives dnF/dVn are
both zero, and the critical pressure is −dF/dV at the same
point. The occurrence of the critical point is observed visually.
The critical composition at 230.15 K is xCH4

≈ 0.64 and the
critical pressure is approximately 70 bar. The critical
composition at 250.15 K is xCH4

≈ 0.55, and the critical
pressure is approximately 81 bar. These results were obtained
using mole fractions of CH4 separated by 0.02 (not shown in
Figure 6 for clarity), and the uncertainties in the critical
composition and pressure are estimated to be 0.02 and 5 bar,
respectively. The critical pressure can also be extrapolated from

the simulated data by plotting p versus xvap − xliq. At the critical
point, xvap − xliq is equal to zero. These results agree with those
given above. The apparent critical points of a finite system
depend on the system size, V. These parameters obey a scaling
law behavior with V.41−45 To investigate the sensitivity of the
calculated critical points with the system size used, we have
calculated the critical points (critical pressures and composi-
tions) for systems with double and half of the size of the
studied system. We found that the apparent critical pressures
and CH4 mole fractions of small systems are slightly higher
than those of bigger systems. However, these differences are
still within the uncertainties of the estimation of the critical
points.
Figure 7 shows the chemical potentials of each species in the

mixture CO2 + CH4 at the vapor−liquid equilibrium condition,
calculated using eq 7. At both temperatures, the chemical
potential of CH4 increases steeply while that of CO2 decreases
gradually as the pressure increases. The gradient of the
chemical potential of CH4 decreases as the pressure increases.
This indicates that at the vapor−liquid equilibrium condition
the chemical potential of CH4 is more sensitive to pressure than
that of CO2 and that the solubility of CH4 in CO2 increases
with the pressure.
The rate of change of the chemical potentials with respect to

the pressure of a given species (species 1, for example) at two-
phase equilibrium can be expressed in terms of the mole

Figure 4. Gibbs free energy per particle versus CH4 composition for
CO2 + CH4: (a) 230.15 K and 20.92 bar and (b) 250.15 K and 38.36
bar. The standard deviations are determined and shown as error bars
by performing a set of 15 different simulations for each volume.

Figure 5. Phase diagram of the CO2 + CH4 system at (a) 230.15 K
and (b) 250.15 K. Energy partitioning method (squares with error
bars) versus experimental data (pluses) and Gibbs ensemble technique
(crosses with error bars). Stars indicate the critical points calculated
from the energy partitioning method.
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fraction of the other species in both phases and the molar
volume (v) of each phase as

μ
=

−

−

β α α β

β αp
x v x v

x x

d

d
1 2 2

2 2 (8)

Thus, since the mole fractions and the volumes of each phase
are known (Figures 3 and 4), dμ1/dp can be calculated. For
example, dμCH4

/dp at 230.15 K and 29.16 bar is about 870 cm3/
mol and that calculated using eq 8 gives 890 cm3/mol. The
difference between these two numbers comes from the
uncertainties in placing the tangent line. Equation 8 can also
be used to interpret the behavior of the chemical potentials
shown in Figure 7. The rate of change of the chemical potential
of CH4 with respect to the pressure is (xCO2

liq vvap − xCO2

vap vliq)/
(xCO2

liq − xCO2

vap ). Since the molar volume of vapor is larger than
that of liquid and the mole fraction of CO2 in the liquid is
always greater than in the vapor, this quantity is always positive.
At low pressure, the molar volume of the vapor phase is much
larger than that of the liquid phase, and this results in a steep
slope. As the pressure increases, the volume of the vapor phase
decreases and also the mole fractions of CO2 in both phases get
closer to each other, which decreases the magnitude of dμCH4

/
dp. This is observed from Figure 7. A similar analysis can be
done for dμCH4

/dp, which equals (xCH4

liq vvap − xCH4

vap vliq)/(xCH4

liq −
xCH4

vap ). Although the volume of the vapor phase is much greater

than that of the liquid phase, the mole fraction of CH4 in the
liquid phase is smaller than that in the vapor phase. Therefore,
xCH4

liq vvap − xCH4

vap vliq is positive, while xCH4

liq − xCH4

vap is negative.
Thus, dμCH2

/dp is negative, which is observed in Figure 7b.

5. CONCLUSION

In this paper, we have calculated the density of states, partition
function, free energy, and chemical potential of the binary
mixture CO2 + CH4 using an energy partitioning MC
technique. The Gibbs free energy of the binary mixture is
computed as a function of the volume and the composition.
Knowing the Gibbs free energy allows us to predict the vapor−
liquid equilibrium properties, which agree quite well with
experimental data and simulations using the Gibbs ensemble
technique. One of the advantages of the energy partitioning
method is that it allows us to observe the occurrence of the
critical composition by constructing plots of the Helmholtz free
energy versus the volume. We also obtain the chemical
potentials of each species in the mixture directly. These
quantities are useful, but difficult to compute using other
methods. At the vapor−liquid equilibrium condition, we find
that the rate of change of the chemical potentials with respect
to pressure of CH4 increases significantly, whereas that of CO2
slightly decreases. The chemical potential of CH4 varies
significantly with pressure, while that of CO2 does not vary
much. This is understandable in terms of the composition and
the volume of both phases.
The energy partitioning method can be applied to other

binary mixtures and can be easily extended to study ternary
mixtures and the free energy of transfer between two solvent
phases. Standard methods for measuring free energy differences,

Figure 6. Helmholtz free energy per particle versus volume per particle
of the mixture CO2 + CH4 at different compositions at (a) 230.15 K
and (b) 250.15 K. The standard errors are determined by performing a
set of 15 different simulations for each volume. In most cases, the
errors are between 0.4% and 0.7%. For the sake of clarity, the plots in
(a) at the compositions of CH4 equal to 0.5, 0.54, 0.58, 0.62, and 0.64
are offset by −1.0, −0.8, −0.6, −0.4, and −0.2 kJ/mol, respectively.
The plots in (b) at the compositions of CH4 equal to 0.3, 0.4, 0.5, and
0.55 are offset by −0.8, −0.6, −0.4, and −0.2 kJ/mol, respectively.

Figure 7. Chemical potentials of each species in the mixture CO2 +
CH4 at the vapor−liquid equilibrium condition versus pressure at (a)
230.15 K and (b) 250.15 K.
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such as thermodynamic integration and free energy perturba-
tion, are not directly applicable to calculations of the free energy
of transfer.46 A combination of the Gibbs ensemble method,
Widom’s test particle47 and the configurational biased MC
technique48,49 have been used to tackle this problem for
alkanes.46,50 Using the energy partitioning method, the free
energy of transfer could be obtained from the chemical
potential. Since the method gives access to the free energy, it
will be useful in many other applications. Also, the method can
be extended to study systems with discrete energy levels, for
which there is also a large number of applications.
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